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Motivation

T ∼ 200− 300 MeV

pT ∼ tens of GeV (RHIC)

collision axis

hundreds of GeV (LHC)

High pT hadrons suppression
Medium produced in the RHIC collisions is able
to quench jets. Occasionally the hard valence
partons undergo hard scattering, two
back-to-back hard partons with a large pT in the
final state.

High pT partons as probes
the parton propagates as much as
5− 10 fm within the medium

production cross-sections for hard partons
well known (both by pQCD and data from
proton-nucleus collisions)

The medium has two main effects on the propagating hard parton:

changing direction of its momentum

parton energy loss
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Transverse momentum broadening

Transverse momentum broadening
Change in momentum direction: “transverse momentum broadening”.

tranverse: perpendicular to the original direction of motion

broadening: many hard partons within a jet are kicked from the medium, no
change in the mean momentum but the spread of the momenta
of the individual partons broadens

The jet quenching parameter q̂
The jet quenching parameter is defined as the mean transverse momentum
picked up by the hard parton per unit distance travelled (or in the high energy
limit unit time)

q̂ =
〈k2
⊥〉
L

, (L = medium length)
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Energy loss in the high energy limit

Radiative energy loss
In the high energy limit enegy loss dominated by the QCD analogue of
bremsstrahlung.

Medium at temperature T

xQ, k⊥

Q (1− x)Q

The incident and outgoing partons and the radiated gluon are constantly kicked by the
medium: they are all subjects to transverse momentum broadening.
The jet-quenching parameter q̂ plays a central role in the energy loss calculation, but it
is defined via transverse momentum broadening only.
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Toward a factorized description

Separation of scales
Parton energy loss and transverse momentum broadening involve widely
separated scales

Q � k⊥ � T

Factorized description physics at each scale cleanly separated at lowest
nontrivial order, correction to factorization systematically
calculable, order by order in the small ratio between the scales.

First step
Formulation of the jet quenching parameter calculation in the language of
Soft Collinear Effective Theory (SCET).
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Set-up of the problem

Energy scales
Study propagation of a hard parton with initial four momentum

q0 ≡ (q+
0 ,q

−
0 ,q0⊥) = (0,Q,0)

propagating through some form of QCD matter. Consider QGP in equilibrium
at temperature T (although our analysis would apply to other forms of matter).

We assume Q � T , we have a small dimensionless ratio λ ≡ T
Q � 1.

Goal
Characterize the transverse momentum broadening by computing P(k⊥), the
probability distribution for the hard parton to acquire transverse momentum
k⊥ after traversing the medium.

P(k⊥) depends on the medium length L.

Normalization convention
∫ d2k⊥

(2π)2 P(k⊥) = 1
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k⊥ broadening in the high energy limit

q0 q′

p

q′ = q0 + pq0 = (0, Q, 0)

Case 1: soft p = (λ, λ, λ)Q
Hard parton in the final state: q′ = Q(λ, 1, λ)
Process suppressed by αs(

√
TQ)

Kicked off-shell by q′ 2 ∼ λQ2, it then radiates
gluons.

Case 2: Glauber p = (λ2, λ2, λ)Q

Final state “collinear” parton: q′ = Q(λ2, 1, λ)
Further Glaubers keep the part off-shell by the
same order, q′ 2 ∼ λ2Q2, not induced radiation
Interaction vertex: αs(T )

Case 3: collinear p = (λ2,1, λ)Q
Dominant contribution to parton energy loss.
Interaction vertex: αs(T )
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k⊥ broadening without radiation, Q →∞ limit

Relevance of Glauber gluons
Process 1, 2 and 3 all yield momentum broadening of order ∼ λQ ∼ T .

we neglect process 3, radiative processes

we neglect process 1, suppressed by αs(
√

TQ)

process 2 larger contribution to momentum broadening in the Q →∞ limit

Glauber gluons in the medium less numerous than the soft gluons, process 1
may be relevant at the Q values accessible at RHIC and the LHC.
All 3 processes must be included before comparing to data.

Our focus
Non-radiative momentum
broadening in the Q →∞ limit:

easiest case to handle

natural context in which the jet
quenching parameter arises

Our language
Soft Collinear Effective Theory
(SCET). In the λ→ 0 limit:

natural separation of scales

natural organization of the modes
into kinematic regimes
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SCET effective Lagrangian

Goal
Derive an effective Lagrangian to describe the interaction between collinear
quarks and Glauber gluons. (Idilbi, Majumder)

Collinear quark field

Collinear quark: four-momentum scaling as q = Q
(
λ2,1, λ

)
.

Light-cone unit vectors: n̄ ≡ 1√
2

(1,0,0,−1) , n ≡ 1√
2

(1,0,0,1).

Collinear quark field decomposition

ξ(x) = ξn̄(x) + ξn(x), ξn̄(x) ≡ /̄n/n
2 ξ(x), ξn(x) ≡ /n/̄n

2 ξ(x)

Integrating out the “small component” ξn(x)

Integrate out ξn(x) by using its equations of motion

LQCD = ξ̄i /Dξ ⇒ Ln̄ = ξ̄n̄ i/n (n̄ · D) ξn̄ + ξ̄n̄ i /D⊥
1

2 in · D i /D⊥ /n ξn̄
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Effective Lagrangian at LO in λ and Feynman rules

restrict to interactions with Glauber gluons in Dµ ≡ ∂µ − igAµ, which can
only change the perpendicular momentum q⊥

remove “large” phases from ξn̄(x): ξn̄(x) = e−iQx+ ∑
q⊥ eiq⊥·x⊥ξn̄,q⊥(x)

= i 6 n̄ Q
2q+Q−q2⊥+iǫ

= igtanµ 6n

q

q q′

µ, a

Power counting in λ

ξn̄(x) ∼ λ, i∂µξn̄,q⊥ (x) ∼ λ2ξn̄,q⊥ (x), A+ ∼ λ2

SCET Lagrangian at O(λ4)

Ln̄ =
X

q⊥,q′⊥

ei(q⊥−q′⊥)·x⊥ ξ̄n̄,q′⊥

"
i n̄ · D +

q2
⊥

2Q

#
/nξn̄,q⊥
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Optical theorem

Unitarity of the S-matrix
Probability amplitude for the process α→ β: Sβα = δβα + iMβα.

The S-matrix is unitary:
∑

β |Sβα|2 = 1⇒ 2 Im Mαα =
∑

β |Mβα|2.

Box quantization

Cubic box of sides L. Periodic BC⇒ p = 2π
L (n1,n2,n3).

In our set-up β differs from α only on its value of k⊥:
∑

β = L2 ∫ d2k⊥
(2π)2 .

Probability distribution P(k⊥)

We identify: P(k⊥) = L2
{ |Mβα|2 β 6= α

1− 2Im Mαα + |Mαα|2 β = α
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Forward scattering amplitude

Strategy
Compute 2 Im Mαα by cutting the appropriate diagrams;
Use the unitarity relation to identify |Mβα|2;
Evaluate P(k⊥) for k⊥ 6= 0;

The normalization condition
∫ d2k⊥

(2π)2 P(k⊥) = 1 fixes P(0).

q′0q′1q′m−1q0 q1 qn−1 k k

p′1p′2p′m−1p′mpnpn−1p2p1

y′1y′2y′m−1y′mynyn−1y2y1

2 Im Mαα =
∑∞

m=1,n=1Amn =
∑∞

m=1,n=1
∫ d2k⊥

(2π)2
d2Amn
d2k⊥
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Forward scattering amplitude evaluation

q′0q′1q′m−1q0 q1 qn−1 k k

p′1p′2p′m−1p′mpnpn−1p2p1

y′1y′2y′m−1y′mynyn−1y2y1

SCET Lagrangian Feynman rules give:

d2Amn

d2k⊥
=

1
√

2QL3

Z
dk+dk−

(2π)2

n−1Y
i=1

d4qi

(2π)4

m−1Y
j=1

d4q′j
(2π)4

× ξ̄n̄(q′0)
1Y

j=m−1

"
(−ig)A+(−p′j ) /n

−iQ
2Qq′+j − q′ 2j ⊥ − iε

/̄n

#
(−ig)A+(−p′m)/n

× 2πQδ
“

2k+Q − k2
⊥

”
/̄n igA+(pn)/n

n−1Y
i=1

"
iQ

2Qq+
i − q2

i ⊥ + iε
/̄n igA+(pi )/n

#
ξn̄(q0)
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A few comments on d2Amn
d2k⊥

The cut momentum k⊥
The cut momentum k is the four-momentum of the hard parton in the final state. Its
perpendicular component k⊥ is not integrated over.
For forward scattering amplitude: q0 = q′0 ⇒ k⊥ =

Pn
i=1 pi⊥ =

Pm
i=1 p′i⊥

pi⊥’s and p′i⊥’s are of order λQ = T in magnitude;

k⊥ may turn out to be larger.

Typical value of k2
⊥ is q̂L, in particular k2

⊥ grows with L.

Aµ(p) as a background field
Hard parton propagation in a given field configuration Aµ(p). Nonperturbative physics
of the medium does not enter this calculation. Average over configurations at the end.

Gluon operators A+ = Aa+ ta
F orderingQ1

j=m−1 A+(−p′j ) ≡ A+(−p′1) · · ·A+(−p′m−1);
Qn−1

i=1 A+(pi) ≡ A+(pn−1) · · ·A+(p1)
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Forward scattering amplitude evaluation II

After
averaging over the color indices;

some Dirac algebra;

gluon fields in the coordinate space

d2Amn

d2k⊥
=

2n+m
√

2L3 Nc

Z nY
i=1

d4yi

mY
j=1

d4y ′j e−iq0·(y1−y′1) Tr

24 1Y
j=m

(−ig)A+(y ′j )
nY

i=1

igA+(yi )

35
× g(yn − y ′m, k⊥)

m−1Y
j=1

f∗(y ′j − y ′j+1)

n−1Y
i=1

f (yi − yi+1)

f (z) ≡
Z d4q

(2π)4

iQ

2Qq+ − q2
⊥ + iε

eiq·z = δ(z+)θ(−z−)
iQ

4πz−
e
−i Q

2z−
z2
⊥ ,

g(z, k⊥) ≡
Z dk+dk−

(2π)2
2πQδ

“
2k+Q − k2

⊥

”
eik·z =

1

2
δ(z+)e

−ik⊥·z⊥+i
k2
⊥

2Q z−
.
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The Q →∞ limit

Q →∞ for f (z) and g(z, k⊥)

So far not used the Q →∞ limit (although used in setting up the problem).
In this limit both f (z) and g(z, k⊥) simplify.

Q � p2
⊥z− ⇒ f (z) ≈ 1

2δ (z+) θ (−z−) δ2 (z⊥)

Q � k2
⊥z− ⇒ g(z, k⊥) ≈ 1

2δ (z+) e−ik⊥·z⊥

Condition for the Q →∞ limit

p2
⊥ ∼ T 2 is the typical magnitude of the pi⊥’s and p′i⊥’s

k2
⊥ =

(∑n
i=1 pi⊥

)2
=
(∑m

i=1 p′i⊥
)2

Criteria for g(z, k⊥) stronger, z− cannot be bigger than L− ≡ √2L.
We require: Q � k2

⊥L ∼ q̂L2
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Physical significance of the Q →∞

If the condition Q � k2
⊥L ∼ q̂L2 is satisfied

f (z) ∝ δ2 (z⊥)

It means that L is short enough that trajectory of the hard parton in position space
remains well-approximated as a straight line, even though it picks up transverse
momentum.

In this limit:
∞X

m=1,n=1

d2Anm

d2k⊥
=

1
Nc

Z
d2x⊥ e−ik⊥·x⊥

D
Tr
h“

W †F [0, x⊥]− 1
”

(WF [0, 0]− 1)
iE

where

WF
ˆ
y+, y⊥

˜
≡ P

(
exp

"
ig
Z L−

0
dy− A+(y+, y−, y⊥)

#)
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|Mβα|2 from the unitarity relation

The unitarity relationZ
d2k⊥
(2π)2

∞X
n=1,m=1

d2Anm

d2k⊥
= 2 Im Mαα =

X
β

|Mβα|2

allows us to identify

|Mβα|2 =
1

L2 Nc

Z
d2x⊥ e−ik⊥·x⊥

D
Tr
h“

W †F [0, x⊥]− 1
”

(WF [0, 0]− 1)
iE

= −igµν
1

2q+Q−q2⊥+iǫ
δab

= −2ig q− (taG)bc n̄µgνρ

q

q q′

µ, a

µ, a ν, b

ν, b ρ, c

Collinear gluon case
The propagation of a collinear gluon is
analogous, but:

different Feynman rules

Glauber gluons in the adjoint
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Probability distribution P(k⊥) and q̂

Expression for P(k⊥)

|Mβα|2 and 2 Im Mαα are all we need to find P(k⊥). Thus

P(k⊥) =

Z
d2x⊥ eik⊥·x⊥WR(x⊥), WR(x⊥) =

1
d (R)

D
Tr

h
W †R[0, x⊥] WR[0, 0]

iE
for a collinear particle in the SU(N) representation R, with dimension d (R).

Properties of P(k⊥)

P(k⊥) depends only on the medium property (thus also q̂ does).

Transverse momentum broadening without radiation: field theoretically
well-defined property of the medium.

This is the kind of factorization we hope to find once radiation is included.

q̂ from light-like Wilson lines

q̂ ≡ 〈k
2
⊥〉
L

=

√
2

L−

Z
d2k⊥
(2π)2 k2

⊥

Z
d2x⊥ eik⊥·x⊥WR(x⊥)
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Operator ordering for the q̂ evaluation

Expectation valueWR(x⊥) different operator ordering than a standard
Wilson loop. Recall A+ = (A+)ata.

Standard Wilson loop

(A+)a time ordered;

ta path ordered.

Wilson lines inWR(x⊥)

(A+)a path ordered;

ta path ordered.

ti tf

tf − iǫti − iǫ

ti − iβ

WR(x⊥) should be described using
the Schwinger-Keldysh contour

one of the light-like Wilson lines
on the Im t = 0 segment

the other light-like Wilson line on
the Im t = −iε segment
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q̂ evaluation in N = 4 SYM revisited

Standard AdS/CFT evaluation
N = 4 SU(Nc) gauge theory

large Nc and g2
YM Nc limit

Gravity dual: AdS Schwarzschild
black hole at nonzero temperature

〈W (C)〉 = exp [i {S(C)− S0}]

(Liu, Rajagopal, Wiedemann)

Taking the ordering into account (Lorentztian AdS/CFT, Skenderis and Van Rees)

Construct the bulk geometry corresponding to the Im t = −iε segment of the
Schwinger-Keldysh contour

Two segments meet only at the horizon, only one nontrivial (connected) string world sheet

String action solution at the boundary r =∞, now not allowed: Wilson lines at different
values of Im t , no string world sheets that connect them without touching the horizon.

same world sheet as the old calculation, result unchanged: q̂ =
π3/2Γ( 3

4 )

Γ( 5
4 )

q
g2

YM Nc T 3
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Summary and future directions

Summary

Probability distribution P(k⊥) evaluation within an EFT formalism

Glaubers responsible for k⊥ broadening in the absence of radiation

P(k⊥) and q̂ depend on the medium property only (factorization)

Subtleties about the operators ordering: strong coupling q̂ evaluation more
straightforward, previous result unchanged

Future directions
include soft gluons (αs suppressed, but more numerous)

include radiation, see how q̂ enters in the spectrum of the radiated gluons

include higher order corrections in λ

weak-coupling q̂ evaluation for QCD plasma at high enough T

compare our P(k⊥) with the correspondent quantity in N = 4 SYM
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